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Incentive Systems for New Mobility Services 

EXECUTIVE SUMMARY 

With rapid population growth and urban development, traffic congestion has become an 
inescapable issue, especially in large cities worldwide. Many congestion reduction strategies 
have been proposed in the past, ranging from roadway extension, transportation systems 
management, and operations to demand management. In particular, as a demand management 
approach, congestion pricing and incentive offering schemes have been used as reinforcements 
for traffic control. Despite extensive research on congestion pricing mechanisms, almost all 
studies focus on traditional mobility systems, and little has been done for future mobility 
services. With recent technological advancements, the shape of mobility services is drastically 
changing. Traditionally, the driver is the car owner and is the ultimate decision-maker on 
his/her origin, destination, routing, and time of travel. In contrast, future mobility systems 
consist of different organizations and companies that completely (or partially) influence the 
behavior of individual human (or AI-based) drivers. Such organizations include car-sharing 
services (e.g., Zipcar, Turo), ride-hailing services (e.g., Uber, Lyft), crowdsourcing delivery 
systems (e.g., Amazon Flex, Instacart, DoorDash), navigation applications (e.g., Google Maps 
and Waze), and even companies producing autonomous cars with built-in navigation systems 
(e.g., Tesla), to name just a few.  

In this work, we develop mechanisms for offering incentives to organizations and companies to 
change the behavior of individual drivers in their organization (or individuals using their 
organization’s services). Such mechanisms can be more effective than traditional individual-
level incentive offering mechanisms since each organization can control a large pool of 
individual drivers, thus moving the traffic flow toward the optimal “system-level” performance. 
In addition, such an “organization-level” incentive offering enjoys more flexibility than the 
individual “driver-level” incentive mechanisms.  Our approach provides incentives to 
organizations to reduce the travel time of the system by indirectly influencing the behavior of 
individual drivers in these organizations. The provided model relies on historical data as well as 
demand estimates provided by organizations to predict traffic flow of the network; and 
provides incentives to organizations to reduce the system-level congestion.  

We formulate the optimal incentive offering mechanism as a large-scale optimization problem 
and develop an efficient algorithm for solving it. We evaluate the performance of our method 
using data from the Los Angeles area. The Los Angeles region is ideally suited for being the 
validation area as one of the most congested cities in the US. Additionally, researchers at USC 
have developed the Archived Data Management System (ADMS) that collects, archives, and 
integrates a variety of transportation datasets from Los Angeles, Orange, San Bernardino, 
Riverside, and Ventura Counties. ADMS includes access to real-time traffic datasets from i) 9500 
highway and arterial loop detectors providing data approximately every 1 minute, and ii) 2500 
bus and train GPS location (AVL) data operating throughout Los Angeles County. Our 
experiments on this data show that the proposed model can reduce the total travel time of the 
system by up to 6.9% during peak traffic period in the morning. In addition, incentivizing 
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organizations can be up to 8 times more efficient than incentivizing individual drivers in terms 
of incentivization monetary cost, according to our model. 
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Introduction 

According to the Transportation Statistics Annual Report of 2018, there was a 15.6% growth in 
vehicle-miles of travel and 19% increase in the total number of registered vehicles from 2000 to 
2018. However, for the same period of time, public road and street mileage was just expanded 
by only 5.1% and total lane-miles merely augmented by 6% [1]. Due to an increase in the 
number of vehicles and traveled miles and the slow expansion of transportation infrastructure, 
cities are experiencing serious congestion. Today, traffic congestion is one of the most 
prevailing problems in large cities around the world causing lower quality of life and huge 
economic losses. INRIX, a company that provides traffic management services, estimates a $88 
billion economy loss and 99 hours loss of time per driver in United State because of traffic 
congestion in 2019 [2]. In the Los Angeles area alone, each driver lost 103 hours in 2019 due to 
traffic congestion [3].  

Beside economic losses, quality of air can be exacerbated by traffic congestion which can lead 
to worsening of the community's health. Transportation Research Board, one of the seven 
program units of the National Academies of Sciences, Engineering, and Medicine, reports 
emitted pollutants by vehicles as the main source of air pollution [4]. Duration and intensity of 
traffic congestion can aggravate emission levels [5] which leads to an increase in air pollution 
(specifically NO2) [6]. In addition, traffic congestion can increase the frequency of aggressive 
behavior of drivers and increase their stress level. In particular, Hennessy and Wiesenthal show 
an increase in the Likert scale, a psychometric scale which ranges from 0 = “low stress level” to 
4 = “high stress level”, by more than two times from 0.8 to 1.73 during traffic congestion [7]. 
Higher levels of stress in drivers can result in a rise in accident occurrences [8]. 

Cambridge Systematics [9], a transportation consultancy firm that works on planning and policy 
related to movement of people and goods, categorizes the congestion reduction solutions into 
three groups: 

1. Adding more capacity 

2. Transportation System Management and Operation (TSM&O) 

3. Demand Management 

Strategy 1 consists of transportation infrastructure expansion such as adding more lanes to 
highways and building new roads. This solution may be effective for solving traffic congestion. 
However, different reasons such as local and national movements against this strategy and 
financial constraints have hindered taking this solution into action in recent years. It should be 
also noted that in congested metropolitan areas, it is unlikely to have congestion improvement 
by increasing the lane miles [10] because of the increase in the Vehicle Miles Traveled after lane 
miles increase [10]. TSM&O, the second strategy, aims at making the existing infrastructure 
more efficient and controls the short-term demand for the current network. TSM&O strategies, 
such as reversible commuter lanes, dynamic re-timing of traffic signals, providing information 
about travel conditions to travelers, and converting streets to one-way operation, are much 
more cost-efficient compared to constructing new transportation infrastructure in 1. Although 
the cost of TSM&O strategies is low, they are not enough to solve traffic congestion. The third 
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strategy, Demand Management, includes Travel Demand Management (TDM), non-automotive 
travel modes, and land use management. The focus of Travel Demand Management is not on 
transportation infrastructure but better management of travel demand. Putting more people 
into fewer vehicles (e.g., ride-sharing), shifting the time of travel, and removing the need for 
travel altogether (e.g., teleworking) are a few examples of TDM. The need for substantial 
changes in drivers' lifestyle and inflexibility of workers' schedule are some of the main 
challenges of TDM strategies. To lower the travel rate of personal vehicles, more investment in 
the non-automotive form of transportation such as bus, rail transit systems, and bikeways can 
be employed as alternative strategies. In this report, we focus on a TDM approach.  

In this research, we develop a mechanism to change the behavior of individual drivers in 
organizations. To be more specific, Demand Management which is the third category of 
Cambridge Systematics is our utilized framework. Pricing mechanisms in the literature can be 
considered as the closest approach to this work. There is an extensive study in both theory and 
practice for road pricing policies such as taxation or assigning a fee for entering a highway or 
road. [12] and [13] study the effect of monetary penalties on drivers' traveling behavior and 
how it results in a change in drivers' behavior (see the book [14], Ph.D. thesis , and the 
references therein). This category aims to motivate people to avoid congested roads and 
reduce the congestion in these roads by reducing their traffic flow. Multiple factors can be 
considered in these pricing mechanisms such as time [16], distance [17], or vehicle 
characteristics [18].  

Although pricing schemes seem a good solution from a market point of view, issues such as 
equity concerns lead to challenges in the implementation of congestion pricing/taxation 
policies [19]. For instance, in some of the past implementations in Lyon, France; Mexico City, 
Mexico; and Genoa, Italy; the congestion pricing mechanism was not successful in the test 
phase because of low public acceptance [20]. Beside the equity barriers, policymakers have 
been hindered from implementing advanced congestion pricing schemes due to complexity and 
uncertainties in planning pricing policies [21]. Gu et al. [22] proposed a pricing model to meet 
equity and efficiency challenges. The proposed model charges drivers based on both distance 
and time. The model uses the amount of time spent in the traffic jam to charge the driver. 
Tradable credits (TCs) or tradable mobility permits (TPMs) are another token-based pricing 
mechanism [23]. In these schemes, drivers are allowed to trade certain tokens/credits via a 
market mechanism. There is a limit on the total number of vehicles in the trading system and 
the total available credits are usually considered as a fixed value – see [24] for a review article 
on this topic. Different mechanisms in this category have been put forward such as receiving 
free travel cards [25]. In addition, [26] and references therein have proposed multiple 
mathematical programming methods to model and define algorithms for such token-based 
schemes. [27] illustrates how tradable credits can be advantageous theoretically. Some 
economic sectors have made use of such token markets such as airport slot allocation [28]. 
However, design complexities [29] of such cap-and-trade programs have prevented 
implementation of these schemes in individual-level personal travels and daily commutes [30].  
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Recently, positive incentive schemes have attracted more attention from researchers. 
Rewarding policy is more popular in comparison with approaches that are based on charging a 
fee [31]. In addition, better effectiveness of rewarding desirable behavior compared to 
penalizing unpreferred ones has been shown in psychological theory of reactance [31]. Despite 
the effectiveness of rewarding policies in changing individual behavior [32], there are not many 
studies on the effectiveness of rewarding methods in the transportation area. The INSTANT 
project [34] has offered positive incentives to motivate travelers to avoid peak times for their 
commute. Rush hours or peak times are the time of the day with the heaviest congestion. The 
CAPRI project of Stanford [35] shows the effectiveness of rewarding policy in reducing 
congestion by offering positive incentives for rush hour avoidance and by changing travel mode 
to walking and biking. [36] has conducted a series of studies in the Netherlands on how 
effective offering positive incentives can be on discouraging drivers from traveling during rush 
hour. Different alternatives were incentivized in these projects such as avoiding rush hour 
(before and after the peak of the traffic in the morning), teleworking, or choosing alternative 
commute modes such as carpooling, cycling, and public transportation. [37] provides different 
levels of incentive to change drivers' departure time and their routing decision. Token as an 
alternative form of incentive was recently offered by [29] for different commuting options such 
as ride-sharing, different travel modes, and different routes. This study utilizes the travel 
history of users to learn their decisions and adjust choices based on their preferences. Users 
receive multiple choices for each trip and the value of an incentive of an alternative will be 
higher if it results in more congestion reduction in the network. Although these studies have 
shown short-term success in implementing rewarding policies, they did not necessarily lead to 
permanent changes in the behavior of individual participants. For instance, when the 
incentivization stopped in [38], participants returned to their previous behavior although the 
rewarding policy was successful in initially changing traveler's behavior during the experiment 
period.  

Different transportation studies have utilized numerous options as an incentive. In Australia, 
[39] provided an early bird ticket program to participants to solve the problem of rail 
overcrowding during peak times. In Beijing, free WiFi and discounted ticket fares could 
effectively reduce the number of commuters during the morning rush hour [40]. To study how 
incentives can change the frequency of commuting by bus, [41] offered free bus tickets. In a 
similar study, [42] offered pre-paid bus tickets to college students in Germany to study its 
effectiveness in increasing the number of trips by bus. The Tripod project used token form 
incentives to reduce energy use [29]. The amount of received tokens were based on the 
amount of energy that a traveler saved. Users could redeem the earned tokens for goods and 
services at local businesses and agencies participating in Tripod. Users in [43] could collect 
credit in the smartphones that they received after joining the project. The credits could be 
redeemed for money or if it was more than a threshold, users could keep the provided 
smartphone. In the CAPRI project of Stanford [35], incentives were offered in the form of game 
points that users could collect by installing an app on their smartphone. Users could trade 100 
points for $1 or use the collected points to play a game in which they may gain money and 
points or lose points. In a different study, [44] provides an algorithm to offer personalized 
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incentives to drivers to reduce the traffic congestion by changing the routing decision of the 
drivers. These incentives could be personalized based on users' preferences. 

In traditional congestion pricing and incentive offering mechanisms, incentives are offered 
directly to individual drivers to influence their decisions such as departure time and routing 
(Figure 1 (a)). In modern and future mobility services, many of these decisions are indirectly (or 
directly) made by organizations providing different transportation services. For example, 
navigation apps, which are regularly used by almost 70% of smartphone users [45], influence 
the routing decision of millions of drivers daily. Another example is crowdsourcing delivery 
platforms such as Amazon Flex, Instacart, and Doordash. According to a recent Morgan Stanley 
estimate, Amazon is already delivering almost half of its own packages using crowdsourcing 
delivery and the number of packages delivered by Amazon will surpass other delivery services 
such as USPS and FedEx by 2022 [68]. Another example of such organizations is ride-hailing 
organizations such as Uber and Lyft. In addition to these drastic changes in mobility services, 
the rise of autonomous cars will make future mobility services the ultimate decision-maker in 
routing, origin-destination selection, and the travel time in many applications. Thus, instead of 
incentivizing individual drivers, it is more advantageous to incentivize organizations to reduce 
congestion. Intuitively, since organizations have more flexibility and more power to change the 
traffic, it is expected that incentivizing organizations be more efficient than incentivizing 
individual drivers. Furthermore, a mechanism has more options in balancing the route selection 
across the large pool of drivers employed by the organization. Motivated by this idea,  this 
research project develops an incentive offering mechanism to organizations to indirectly (or 
directly) influence the behavior of individual drivers (Figure 1 (b)) Our framework will be based 
on the following three-step procedure: 

Step 1) The central planner receives organizations’ demand estimates for the next time interval 
(e.g., next few hours) 

Step 2) The central planner offers incentives to organizations to change their routes, travel 
time, and demand if necessary. 

Step 3) Observe organizations’ response and go back to Step1 for the next time interval. 

The central planner (which is referred to as “Incentive Offering Platform” in Figure 1 (b) collects 
the organizations’ demand estimates. We assume that organization will share the OD of their 
vehicles with the central planner. Based on the collected information, the central planner offers 
incentives to organizations to influence drivers’ behavior. Then the central planner observes the 
organizations’ responses to the incentives offered, and the entire process is continuously 
repeated in the network. In this process, the assigned route to each driver is fixed and does not 
change during the travel and driver is assumed to follow the route during the travel. When 
there is no incentivization, we assume that drivers select the route with the smallest travel 
time. The central planner is assumed to have the information of the routes with the smallest 
travel time given the OD. 
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Figure 1. (a) Traditional platforms for offering incentives. (b) Presented platform for offering 
incentives. 

The rest of this report is organized as follows. Section “Incentive Offering Mechanisms” 
introduces the basic notations and provides a description of our incentive offering mechanism 
for congestion reduction. We formulate an optimization problem to find the “optimal” 
incentive offering strategy. We then propose an algorithm for solving this optimization problem 
efficiently. Results of numerical experiments for the model are presented in Section “Numerical 
Experiments” using data from the Los Angeles area. Conclusions are provided in Section 
“Conclusion”. 

Incentive Offering Mechanisms 

Given the origin-destination information of drivers of the organizations, the goal is to find the 
“optimal” strategy for offering organization--level incentives to them to reduce the traffic 
congestion of the system. To mathematically state the problem, we begin this section by 
elaborating on our notations. For further details of the notation, an example is provided in 
Appendix “An Example of the Model and Notations”.  

The traffic network is modeled by a directed graph 𝒢 = (𝒱, ℰ). Vertices 𝒱 of the graph are 
major ramps and intersections in the network and are connected by a set of edges ℰ. The 
direction of an edge in our directed graph is based on the direction of the road from which a 
driver can go from one node to another. The adjacency of two nodes is based on the possibility 
of driving directly from one node to another without visiting any other node. The total number 
of road segments/edges of the network is denoted by |ℰ| (i.e., the cardinality of the set ℰ). A 
route in the network is a path in the graph and is denoted by one-hot encoding scheme. In 

other words, a given route is represented by a vector 𝑟 ∈ {0,1}|ℰ| in which the 𝑘-th entry is one 
if the 𝑘-th edge is in route 𝑟 and it is zero, otherwise. Let 𝑇 = {0,1,… , 𝑇} denote the defined 

time horizon such that 𝑡 = 1 is the starting time of the system. The vector 𝑣𝑡 ∈ 𝑅
|ℰ| denotes 

the traffic volume of road segments at time 𝑡 in which the 𝑘-th entry is the total number of 
vehicles of road segment 𝑘 at time 𝑡. 

Let 𝒩 = 𝒩1 ∪ …∪𝒩𝑛 denote the set of all drivers and 𝒩𝑖 denote the set of drivers of 
organization 𝑖. If a driver works for multiple organizations, he or she will be counted as a 
different driver at each organization. Hence, 𝒩1 ∩ …∩𝒩𝑛 = ∅. For any driver 𝑗 ∈ 𝒩𝑖 , let ℛ𝑗 ⊆
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{0,1}|ℰ| denote the set of driver's possible route choices between their origin and destination. 

The binary variable 𝑠𝑖
𝒓,𝑗
∈ {0,1} represents the assigned route to driver 𝑗 of organization 𝑖. For 

this driver and given the route 𝒓 ∈ ℛ, the variable 𝑠𝑖
𝒓,𝑗
= 1 if route 𝒓 is assigned to the 𝑗th driver 

of organization 𝑖; and 𝑠𝑖
𝒓,𝑗
= 0, otherwise. Each driver can only be assigned to one route, i.e., 

∑ 𝑠𝑖
𝒓,𝑗

𝒓∈ℛ𝑗 = 1 Given any routing strategy assigned to drivers, we model the decision of the 

drivers deterministically due to the power of the organizations in enforcing their drivers' route.  

If a driver works for an organization, we call it a business driver. In this project, we change the 
routing decision of business drivers via incentivizing their organizations. We assume that 
organizations accept our route assignments if the incentive offer can compensate for the 
change in their total travel time. Notice that when the organizations make their decision in 
accepting the offer, they do not have access to the offered route assignments to the other 
organizations. Hence, they can only check the travel time estimations based on the historical 
data. In the next section, we present our model and formulation in more detail. A complete list 
of notations used in this report can be found in the Appendix “List of Notations”.  

Model 

In this section, we present our formulation to optimize a certain cost function of the system 
given the amount of available budget. In the presented formulation, we employ total travel as 
our cost function but any other cost function such as energy consumption or carbon emission 
can be used. We compute the system total travel time by summing the drivers' travel time of all 
road segments over all time periods in the horizon of interest: 

𝐹𝑡𝑡(�̂�) =∑∑�̂�ℓ,𝑡𝜃ℓ,𝑡(�̂�ℓ,𝑡)

|𝑇|

𝑡=1

|ℇ|

ℓ=1

 (1) 

where 𝜃ℓ,𝑡 is the travel time of link l at time 𝑡 (which itself is a function of the volume of the link 
at the given time). Here, �̂� is the vector of volume of links in which 𝑣ℓ,�̂� is the (|ℰ|  × 𝑡 +

 ℓ)𝑡ℎ element of vector �̂� representing the volume of the ℓ𝑡ℎ link at time 𝑡. Given the volume 
vector, we estimate the travel time of the links at different times as described below.  

Travel time value θ: Different functions have been proposed to capture the relation between 
volume and travel time. For instance, the Bureau of Public Roads (BPR) [50] defines a link 
congestion function in which the travel time of a road has nonlinear relation with its volume: 

𝜃(𝑣) = 𝑓𝐵𝑃𝑅(𝑣) = 𝑡0 (1 + 0.15 (
𝑣

𝑤
)
4

) (2) 

where 𝑓BPR(𝑣) is the travel time of the drivers on the road segment given its traffic volume 𝑣; 
the parameter 𝑡0 is the free flow travel time of the road segment; and 𝑤 is the practical 
capacity of the road segment. In our experiments, to learn the parameters 𝑡0 and 𝑤 of the road 
segments in the Los Angeles area at different times of the day, we utilize the historical traffic 
data of the road segments. Given the 𝜃(. ) function in (2), in order to compute the total travel 
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time of the system, one needs to compute the volume of the links. Next, we explain how the 
volume vector is computed in our model. 

Volume vector �̂�: The computation of volume vector �̂� requires (approximately) estimating the 
location of the drivers at different times based on their route knowledge. Clearly, by assigning a 
different route to a driver, the driver's impact on the values of the vector �̂� will be different 
because the driver's location will change by following a different route. Let us start with 
explaining our notation for route assignment: For each driver, we have a one-hot encoded 
vector describing which route has been assigned to the driver. Thus, for each driver we have a 

binary vector 𝒔𝑖
𝑗
∈ {0,1}|ℛ| in which only one element has a value of one and it corresponds to 

the assigned route to the 𝑗 driver of organization 𝑖. As we need one vector for each driver, we 

can aggregate all our assignments in a matrix 𝑺 ∈ {0,1}|ℛ|×|𝒩| = [𝑺1𝑺2…𝑺𝑛] where 𝑺𝑖 ∈

{0,1}|ℛ|×|𝒩𝑖|, which is the assignment matrix of organization 𝑖 with 𝑛 being the number of 
organizations. As drivers cannot travel in the routes that are irrelevant to their OD pair, the 
corresponding elements in their assignment vector have a value of zero. 

Given the driver's route entering the system at a specific time, we need to model the location 
of the individual in the upcoming times. In order to model the location of drivers in the system, 
we use the model developed by [51] in which the location of drivers are computed in a 

probabilistic fashion. This model can be presented by a matrix 𝑹 ∈ [0,1](|ℰ|⋅|𝑇|)×|ℛ| that 
estimates the probability of the presence of a driver in a given link at a specific time in the 
future (assuming that the driver is picking a specific route).  Multiple ways to estimate matrix 𝑹 
is suggested in [51] including an approach based on the use of historical data. In our 
experiments in subsection “Simulation Model”, the matrix 𝑹  is computed based on the volume 
at User Equilibrium (UE) state of the system. 

Given the matrix 𝑹, it is easy to see that the vector  

�̂� = 𝑹𝑺𝟏 ∈ ℝ|𝜀|∙|𝑇| (3) 

contains the expected number of vehicles in all the links at each time. Plugging the expression 
of �̂� in (1), we get the total travel time of the system as  

𝐹𝑡𝑡(�̂�) =∑∑(𝑹𝑺𝟏)ℓ,𝑡𝜃((𝑹𝑺𝟏)ℓ,𝑡)

|𝑇|

𝑡=1

|ℇ|

ℓ=1

=∑∑(𝒓ℓ,𝑡𝑺𝟏)𝜃(𝒓ℓ,𝑡𝑺𝟏)

|𝑇|

𝑡=1

|ℇ|

ℓ=1

 (4) 

where 𝒓ℓ,𝑡 is the row of matrix 𝑹 which corresponds to link ℓ at time 𝑡. 

To reduce the total travel time of the system, some drivers can be deviated to alternative 
routes to lower the traffic flow of congested links.  To change the routing assignment of drivers, 
we need to offer incentives to their organizations such that it can compensate the 
organizations' financial loss caused by accepting our assignment. For simplicity, we use the 
increase in the total travel time to the organization as a measure of financial loss. Although we 
have estimated the travel time of the system from equation (4), we need to compute the 
“route travel times” to be able to compare the amount of change in travel time of each driver 



 8 

after offering incentives. Given the route travel times, we compute the incentives using a linear 
model which depends on the value of time (VOT) and the amount of increase in the travel time 
for each organization. In particular, we assume that, given the route assignment to organization 
𝑖, the incentive value is  

𝑐𝑖 = α𝑖𝑚𝑎𝑥{0, ∑ 𝜹⊤𝒔𝑖
𝑗

𝑗∈𝒩𝑖

− γ𝑖} (5) 

where 𝑐𝑖 is the incentive offered to organization 𝑖, α𝑖 ∈ ℝ+ is the Value of Time (VOT) for a 

driver in organization 𝑖, 𝜹 ∈ ℝ+
|ℛ|⋅|𝑇| is the travel time of the route for each driver, and γ𝑖 is the 

sum of the minimum travel time route of each driver of organization 𝑖 in the absence of 

incentivization. When ∑ 𝜹⊤𝒔𝑖
𝑗

𝑗∈𝒩𝑖
− γ𝑖 > 0, it means that the organization's total travel time 

has increased compared to the baseline of having no incentive, and hence we will compensate 

the organization's loss. On the other hand, when  ∑ 𝜹⊤𝒔𝑖
𝑗

𝑗∈𝒩𝑖
− γ𝑖 < 0, it means that the 

organization's travel time is improved after incentivization and hence no incentivization is 
required for this particular organization to participate.  The details of our method for 
computing route travel time vector 𝜹 is described next.  

Route travel time vector 𝜹: Estimation of the vector  𝜹 requires the volume of links that can be 
derived based on the route assignment of the drivers. Let 𝑺 denote the routing decision of the 
drivers. Given  , we can estimate the volume vector 𝒗 using (3). By utilizing BPR function (4) and 
the estimated volume vector 𝒗, we are able to compute the speed of the links. Given the speed 
of each link, we can determine the vector 𝜹 that contains the travel time of the different routes 

for different time slots and the vector  η ∈ ℝ+
𝐾⋅|𝑇| that contains the travel time of the fastest 

route for different OD pairs for different times. In order to do so, we rely on the method 
provided by [51]. Given the minimum travel time between OD pairs in η, we can compute the 

minimum travel time of organization 𝑖 as γ𝑖 = (𝑩𝑖η)
⊺𝟏 where  𝑩𝑖 ∈ {0,1}

|𝒩𝑖|×(𝐾⋅|𝑇|) is the 
matrix of shortest travel time assignment of drivers of organization 𝑖 and 𝟏 is the vector of 
ones. 𝑩𝑖η is the vector of shortest travel time between the OD pair for each driver and by 
summing the elements of this vector we get γ𝑖. 

Proposed formulations: For minimizing the total travel time of the system via providing 
incentives to organizations, we propose to solve the following optimization problem: 

min
{S𝑖,𝑐𝑖}𝑖=1

𝑛
, �̂�      ∑∑�̂�ℓ,𝑡𝜃ℓ,𝑡(�̂�ℓ,𝑡)

|𝑇|

𝑡=1

|ℇ|

ℓ=1

  

𝑠. 𝑡.      �̂� = ∑𝐑𝐒𝑖𝟏

𝑛

𝑖=1

      

                               𝐃𝐒𝑖𝟏 = 𝐪𝑖 ,    ∀𝑖 = 1,2, . . . , 𝑛 

                           𝐒𝑖
⊤𝟏 = 𝟏,    ∀𝑖 = 1,2, . . . , 𝑛 

                                                     𝑆𝑖 ∈  {0,1}
(|ℛ||𝐓|)×(|𝒩𝑖|),     ∀𝑖 = 1,2, . . . , 𝑛 

(6) 
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                                            𝐒𝑖
⊤𝜹 ≤  𝒃𝑖⊙𝐁𝑖η,      ∀𝑖 = 1,2, . . . , 𝑛 

                                               𝑐𝑖 ≥ α𝑖(𝜹
⊺𝐒𝑖𝟏 − γ𝑖),     ∀𝑖 = 1,2, . . . , 𝑛 

         𝑐1 +⋯+ 𝑐𝑛 ≤ Ω 

                        𝑐𝑖 ≥ 0,       ∀𝑖 = 1,2, . . . , 𝑛 

where 𝑣ℓ,�̂� is an element of vector �̂� that corresponds to the volume of link ℓ at time 𝑡, 𝑐𝑖 ∈ ℝ+ 

is the cost of incentive assigned to organization 𝑖, 𝑫 ∈ {0,1}(𝐾⋅|𝑇|)×(|ℛ|⋅|𝑇|) is the matrix of route 

assignment of the OD pairs, 𝒃𝑖 ∈ ℝ+
|𝒩𝑖| denotes the factor by which the travel time of an 

assigned route can be larger than shortest travel time of the OD pair, 𝑩𝑖 ∈ {0,1}
|𝒩𝑖|×(𝐾⋅|𝑇|) is 

the matrix of shortest travel time assignment of drivers of the organization 𝑖, and 𝒒𝑖 ∈ ℝ
𝐾⋅|𝑇| is 

the vector of the number of drivers of organization 𝑖 for each OD pair at different times. Here, 
𝐾 is the number of OD pairs. If there are drivers in the system that do not work for any 
organization, we can consider them as a single organization that their decision matrix is 
initialized and has fixed values such that they are assigned to the fastest route (assuming they 
always select the shortest route). Same idea can be employed for organizations that have not 
joined the incentivization platform. In (6), the incentive value of each organization is being 
computed separately based on the increase in travel time of the organization. Hence, total cost 
is based on the increase in total travel time of the organizations and not the individuals. 

∑ 𝜹⊤𝒔𝑖
𝑗

𝑗∈𝒩𝑖
− γ𝑖  is the change of travel time of organization 𝑖 after incentivization. In this term, 

changes of travel time of individual drivers can cancel each other out if some are increasing and 
some are decreasing. This cancelling out effect will lower the amount of incentive required for 
compensation of change in travel time of the organization. However, incentivizing individuals 
will require incentivizing all the individuals with increase in travel time. We explain the 
constraints in more detail below:  

Constraint 1 (�̂� = ∑ 𝑹𝑛
𝑖=1 𝑺𝒊𝟏): This constraint is the estimation of the volume for the different 

links at different times based on the routing assignments for the organizations.  

Constraint 2 (𝑫𝑺𝑖𝟏 = 𝒒𝑖): This constraint makes sure that we assign the correct number of 
drivers for the routes between OD pairs. 𝑺𝑖𝟏 represents the number of drivers that have been 
assigned to the different routes. We use matrix 𝑫 to sum the number of drivers that are 
assigned to different routes between the same OD pair. 𝒒𝑖 is the vector of the actual number of 
drivers of organization 𝑖 that are travelling between the OD pairs and 𝑫𝑺𝑖𝟏 must be equal to 
𝒒𝑖. 

Constraint 3 (𝑺𝑖
⊺𝟏 = 𝟏): This constraint simply states that we can only assign one route to each 

driver of organization 𝑖.  

Constraint 4 (𝑺𝑖 ∈ {0,1}
(|ℛ|⋅|𝑇|)×|𝒩𝑖|):  This constraint imposes binary structure on our decision 

parameters, where 0 means not assigning a route and 1 is assigning the route. 

Constraint 5 (𝑺𝑖
⊺𝜹 ≤ 𝒃𝑖⊙𝑩𝑖η): This is our fairness constraint. Due to different reasons such as 

urgent deliveries by some of the organizations' drivers, they may not accept alternative routes 
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with very large travel time compared to the fastest route. Moreover, the platform should 
consider fairness between different drivers in terms of the amount of deviation from the 
shortest travel time. The fairness constraint bounds the deviation of travel time of the assigned 

routes from the minimum travel time. 𝑺𝑖
⊺𝜹 represents the travel time of the assigned routes to 

drivers of organization 𝑖. 𝒃𝑖 denotes the factor by which deviation is allowed for each driver.  

Constraint 6 (𝑐𝑖 ≥ α𝑖(𝜹
⊺𝑺𝑖𝟏 − γ𝑖) and 𝑐𝑖 ≥ 0):  These two constraints guarantee (5). 

Constraint 7 (𝑐1 +⋯+ 𝑐𝑛 ≤ Ω): This is our budget constraint. The scalar 𝑐𝑖 represents the cost 
of the incentive assigned to organization 𝑖. Ω is the total budget.  

For further elaboration on model (6) and its constraints, an illustrative example is presented in 
Appendix “An Example of the Model and Notations”. 

Algorithm for Offering Incentives and A Distributed Implementation 

The optimization problem (6) is of large size and includes binary variables (𝑺𝑖 , ∀𝑖 = 1, … , 𝑛). 
Thus, solving it efficiently is a challenging task. In this subsection, we propose an efficient 

algorithm for solving it. First, we relax the binary constraint 𝑺𝑖 ∈ {0,1}
(|ℛ|⋅|𝑇|)×|𝒩| to convex 

constraint 𝑺𝑖 ∈ [0,1]
(|ℛ|⋅|𝑇|)×|𝒩|and aim at finding a solution for the new relaxed problem 

min
{S𝑖,𝑐𝑖}𝑖=1

𝑛
, �̂�      ∑∑�̂�ℓ,𝑡𝜃ℓ,𝑡(�̂�ℓ,𝑡)

|𝑇|

𝑡=1

|ℇ|

ℓ=1

  

𝑠. 𝑡.      �̂� = ∑𝐑𝐒𝑖𝟏

𝑛

𝑖=1

      

                               𝐃𝐒𝑖𝟏 = 𝐪𝑖 ,    ∀𝑖 = 1,2, . . . , 𝑛 

                           𝐒𝑖
⊤𝟏 = 𝟏,    ∀𝑖 = 1,2, . . . , 𝑛 

                                                     𝐒𝑖 ∈  [0,1]
(|ℛ||𝐓|)×(|𝒩𝑖|),     ∀𝑖 = 1,2, . . . , 𝑛 

                                            𝐒𝑖
⊤𝜹 ≤  𝒃𝑖⊙𝐁𝑖η,      ∀𝑖 = 1,2, . . . , 𝑛 

                                               𝑐𝑖 ≥ α𝑖(𝜹
⊺𝐒𝑖𝟏 − γ𝑖),     ∀𝑖 = 1,2, . . . , 𝑛 

         𝑐1 +⋯+ 𝑐𝑛 ≤ Ω 

                        𝑐𝑖 ≥ 0,       ∀𝑖 = 1,2, . . . , 𝑛 

(7) 

The cost/objective function of this problem is a summation of monomial functions with positive 
coefficients. Furthermore, θℓ,𝑡 is an affine mapping of the optimization variable 𝑺𝑖. Since our 
domain is the nonnegative orthant and monomials are convex in this domain, the objective 
function is convex. As the constraints of this problem are convex, (7) becomes a convex 
optimization problem. Thus, standard solvers such as CVX [52] can be used to solve this 
problem. However, these solvers have large computational complexity because of utilizing 
methods such as interior point methods [53]  with 𝑂(𝑛3) iteration complexity where 𝑛 is the 
number of variables. The reformulation is provided in the Appendix “Reformulated 
Optimization Model for ADMM Algorithm”. As we discuss in Appendix “Review of ADMM”, this 



 11 

reformulation is amenable to the ADMM method [54]-[57], which is a first-order method and 
scalable. The steps of the resulting algorithm is provided in Algorithm 1. The notations used in 
this algorithm are defined below. 

�̃� = [
𝐷

⋱
𝐷

]      Δ = [

𝛿𝑝
⋱

𝛿𝑝

]    �̃� = [𝑅 … 𝑅]     𝐼 = [𝐼 −𝐼]     �̃� = [
𝑐
𝜇] 

     �̃� = [
𝟏
𝟎
] �̃� = [

𝛼1
⋱

𝛼𝑛

]       𝛼 = [

𝛼1
⋮
𝛼𝑛
]      �̃�𝑡 = [

𝑆1
𝑡𝟏
⋮
𝑆𝑛
𝑡𝟏
]       𝛾 = [

γ1
⋮
γ𝑛
]       𝑞 = [

𝑞1
⋮
𝑞𝑛
]     

      𝜆𝑖 = [

𝜆𝑖,1
⋮
𝜆𝑖,𝑛

] , 𝑖 = 1,3 
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In Algorithm 1, we use the projection operator Π(⋅)[0,1]  that projects elements of a matrix to 

the interval [0,1]. Π(⋅)ℝ+ is also a projection operator but projects elements of a matrix to ℝ+. 

Notice that in Algorithm 1, the computation load of the steps 9, 15, 16, and 17 is extensive 
because matrices 𝑺𝒊,𝑾𝒊, 𝑯𝒊 and 𝒁𝑖 , 𝑖 = 1,2, . . . , 𝑛 have large sizes. However, each column in 
these matrices correspond to one driver and these steps are not coupled so we can perform the 
computation of each column in parallel by leveraging parallel computation.  

In optimization problem (7) (and consequently (10)), all solutions 𝑺𝑖
∗ with a fixed value of 𝑺𝑖

∗𝟏 =
𝒖∗ lead to the same objective as long as 𝑺𝑖

∗⊺𝟏 = 𝟏. Hence, there can be infinite number of 
solutions to our convex problem such that many are far from being binary. As we need to find a 
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binary solution for our final variables, we add the following regularizer to the objective function 
of problem (10) to get a (approximately) binary solution: 

ℜ((Z𝑗)𝑖,(𝑟,𝑡)) = −
�̃�

2
(Z𝑗)𝑖,(𝑟,𝑡)((Z𝑗)𝑖,(𝑟,𝑡) − 1) 

(8) 

where λ̃ ∈ ℝ+ is the regularization parameter and (𝒁𝑗)𝑖,(𝑟,𝑡)
∈ [0,1]. This regularizer pushes the 

entries of matrix 𝑍𝑖 , 𝑖 = 1,2, . . . , 𝑛 toward the required binary domain of {0, 1} by penalizing 
objective function when entries are far from this domain. 

Although we are looking for a solution of problem (6), Algorithm 1 solves the relaxed version of 
this problem, i.e., problem (10). Therefore, we use the solution from Algorithm 1 to find a 
feasible point in (6). For this purpose, we solve the following mixed integer (linear) problem 

min
{S𝑖,𝑐𝑖}𝑖=1

𝑛
      ∑‖𝑺𝑖𝟏 − 𝑢𝑖

∗‖1

𝑛

𝑖=1

          

                               𝐬. 𝐭.      𝐃𝐒𝑖𝟏 = 𝐪𝑖 ,    ∀𝑖 = 1,2, . . . , 𝑛             

                           𝐒𝑖
⊤𝟏 = 𝟏,    ∀𝑖 = 1,2, . . . , 𝑛 

                                                     𝐒𝑖 ∈  [0,1]
(|ℛ||𝐓|)×(|𝒩𝑖|),     ∀𝑖 = 1,2, . . . , 𝑛 

                                            𝐒𝑖
⊤𝜹 ≤  𝒃𝑖⊙𝐁𝑖η,      ∀𝑖 = 1,2, . . . , 𝑛 

                                               𝑐𝑖 ≥ α𝑖(𝜹
⊺𝐒𝑖𝟏 − γ𝑖),     ∀𝑖 = 1,2, . . . , 𝑛 

         𝑐1 +⋯+ 𝑐𝑛 ≤ Ω 

                        𝑐𝑖 ≥ 0,       ∀𝑖 = 1,2, . . . , 𝑛 

(9) 

where 𝑢𝑖
∗ = 𝑺𝑖

�̃�𝟏,∀𝑖 = 1,2,… , 𝑛 is the optimal solution obtained by Algorithm 1. To solve 
problem (9), we can utilize off-the-shelf solvers such as Gurobi. 

Numerical Experiments 

We utilize data from the Los Angeles region to evaluate the performance of our proposed 
incentive model. Due to existing multiple routes between most origin-destination (OD) pairs, 
the Los Angeles area is a suitable region for evaluation. Moreover, the Archived Data 
Management System (ADMS) developed by researchers at the University of Southern California 
collects, archives, and integrates a variety of transportation datasets from Los Angeles, Orange, 
San Bernardino, Riverside, and Ventura Counties. ADMS contains real-time traffic data from 
9500 highway and arterial loop detectors that are measured every 30 seconds and 1 minute 
respectively. While ADMS contains the traffic data of all highways, it does not contain the 
individuals' OD routing and OD information. Thus, we utilize our network flow information to 
make estimation of the origin-destination (OD) matrix. Row 𝑖 and column 𝑗 of the OD matrix 
correspond to the origin 𝑖 and destination 𝑗 respectively and its element is the number of 
drivers going from point 𝑖 to point 𝑗. The OD matrix estimation problem is under-determined 
[59]-[61]. There are two categories of OD matrices: static and dynamic [61]. The majority of 
current dynamic OD estimation (DODE) methods are not computationally efficient for our data 
because of its high resolution. Moreover, many studies use a given data of the OD matrix [63]-
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[66] to which we did not have access. Due to these challenges, we employ the algorithm 
provided by [51]  for OD estimation. 

Simulation Model 

In our numerical experiments, we evaluate the performance of our incentivization method 
using data of Los Angeles area. More specifically, we first extract the sensor information 
including the location of the sensors from the Archived Data Management System (ADMS). 
Then, we extract the speed data and volume data of the selected sensors from ADMS. To create 
the graph of the network, we select sensors on ramps and highway intersections as nodes of 
the graph and use the data of sensors between them to create data of the connecting links. For 
distance of the nodes, we used Google Maps API and location data of the nodes. Figure 2 
depicts the region by which we create our graph network. It has 12 nodes, 32 links, and 288.1 
miles of road. Next, we use the created network graph and its speed data and volume data to 
estimate the OD pairs by the provided algorithm in [51]. The total number of estimated 
incoming drivers in each time interval is illustrated in Figure 3. For each OD pair, we find up to 3 
different routing choices. First, we find the shortest path for each OD pair. Next, we remove the 
links in this route and find the second shortest path if it exists, and we do the same process for 
the third route. We model a region (Figure 2) which includes highways near Downtown Los 
Angeles and its neighborhood. In our network, the number of OD pairs is 144 and there are 270 
paths between them in total.  

We focus on incentivizing the organizations to change their behavior for the 7 AM to 8 AM 
interval (which is the rush hour based on the estimated number of incoming drivers in Figure 2. 
Although we have selected 7 AM to 8 AM as the incentivization time period, we also include 8 
AM to 8:30 AM in our experiments because some of drivers entering between 7 AM and 8 AM 
may not finish their route before 8 AM. To track the effect of these drivers on the total travel 
time of the system, we include traffic flow from 8 AM to 8:30 AM in our analysis as well. The 
estimated total number of drivers incoming to the system between 6 AM to 9 AM by the OD 
estimation algorithm is depicted in Figure 3. The total number of drivers entering the system 
between 7 AM and 8:30 AM is 11985. 

For our baseline, we use the volume of the network at the User Equilibrium (UE). Algorithm 2 in 
Appendix “User Equilibrium (UE) Algorithm” computes the volume of the network at UE. 
Algorithm 2 returns the matrix 𝑹UE and route travel time vector 𝜹UE at User Equilibrium given 
the volume (historical data) and OD estimation as inputs. To compute the cost of organizations' 
incentivization, we need to know the route travel times when drivers have made decisions 
based on the UE route travel time 𝜹UE Hence, we compute the new volume vector 𝒗new =
𝑹UE𝑺UE𝟏  where 𝑺UE is the assignment of drivers to the fastest route based on UE route travel 
time vector 𝜹UE. Using the BPR function, volume vector 𝒗new, and 𝜹UE, we compute 𝜹 that 
denotes the travel time of the routes if drivers make decision based on 𝜹UE and 𝜼 denotes the 
minimum travel time between the different OD pairs. 
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Numerical Results 

In this subsection, using our model and algorithm, we study the impact of organization 
incentivization for different budget values, number of organizations, VOTs, and percentage of 
drivers who are employed by the organizations in the incentivization program. The remaining 
drivers are assumed to be background drivers who follow the 𝜹UE: 

• Scenario I: Among the drivers entering the system between 7 AM and 8 AM, 10% of 
them (i.e., 812 drivers) belong to the organizations that we can incentivize. 

• Scenario II: Among the drivers entering the system between 7 AM and 8 AM, 20% of 
them (i.e., 1624 drivers) belong to the organizations that we can incentivize.  

Drivers in each organization are selected uniformly at random and all selected drivers of 
Scenario I are included in Scenario II to have a fair comparison between the two scenarios. Our 
base Value of Time (VOT) is derived from the estimation of [67] which is $2.63 per minute or 
$157.8 per hour. Default number of organizations in our experiments is 10.  

The percentage of travel time decrease with incentivization as compared to a system with when 
no incentivization scheme is used are presented in Figure 4 for both Scenarios I and II. The no 
incentivization system solution basically assumes all drivers as background drivers. We observe 
that by increasing the available budget, the amount of decrease in travel time increases (as 
expected). This decrease is more in larger budgets in Scenario II because the model has access 
to more drivers to select and has more flexibility to recommend alternative routes. For the 
purpose of sensitivity analysis, we also provide travel time decrease for both Scenario I and II 

with a different VOT of 
157.8

2
= 78. per hour in Figure 4. The comparison of results for different 

VOTs in Figure 4 shows that for a very large budget, the decrease in travel time is almost 
similar. This is because none of the models utilize the entire budget at a $10,000 budget. 
However, with a smaller VOT and the budget of $2000 there is a large gap between Scenarios I 
and II because Scenario II has access to more drivers to deviate. In our plots, the budget of $0 
shows the case when the incentivization platform is absent. In Figure 5, we present the total 
incentivization cost for different budgets in both Scenario I and Scenario II when there are 10 
organizations in the system. This cost increases when the available budget is more, as expected. 
This pattern shows that the platform can utilize the resources when it has access to more 
money. Figure 6 shows the cost per deviated driver for the two scenarios. Although the gap 
between the total cost of Scenarios I and II is small, the cost per driver is significantly smaller in 
Scenario II. As can be seen in this figure, the cost per driver is smaller in Scenario II due to more 
flexibility the model has in choosing the drivers efficiently. As Table 1 shows, the number of 
selected drivers in Scenario II is larger because there are more drivers for selection. 
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Table 1. Distribution of the number of drivers that were assigned to an alternative route. 

Scenario 
Budget 

$200 $800 $2000 $10000 

I 33 57 85 130 

II 51 94 130 222 

The number of organizations in the system can alter the total travel time decrease and the cost. 
Figure 7 illustrates the percentage decrease of travel time and total cost when there are 
different number of organizations in the system.  As an extreme case, we also include the case 
that each organization contains one driver (i.e., we incentivize individuals rather than 
organizations). In Figure 7, we observe larger cost for reducing the same amount of travel time 
decrease when there are more organizations in the system. The intuitive reason behind this 
observation is as follows. For each organization, after incentivization, some drivers lose time 
and some gain travel time. At the organization level, the time changes of drivers can cancel 
each other out, and hence we may not need to significantly compensate the organization. 
When the number of organizations increases, the cancelling effect becomes weaker and the 
incentivization costs more. This also explains why incentivizing organizations is much more cost 
efficient than incentivizing individual drivers. 

 

Figure 2. Studied region. 
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Figure 3. Total estimated number of drivers entering the system (in 5 minute intervals). 
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Figure 4. Percentage of travel time decrease with different budgets at different VOTs. 

 

Figure 5. Total cost of incentivization of 10 organizations with different budgets in Scenario I and II and VOT=$157.8/Hour. 
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Figure 6. Cost of incentivization per Deviated Drivers of 10 organizations with different budgets in Scenario I and II and 
VOT=$157.8/Hour. 
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Figure 7. Cost of incentivization and travel time decrease percentage for different number of organizations in Scenario I and II and 
VOT=$157.8/Hour.
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Conclusion 

In this project, we study the problem of incentivizing organizations to reduce traffic congestion. 
To this end, we developed a mathematical model and provided an algorithm for offering 
organization-level incentives. In our framework, a central planner collects the origin-destination 
and routing information of the organizations. Then, the central planner utilizes this information 
to offer incentive packages to organizations to incentivize a system-level optimal routing 
strategy. In particular, we focused on minimizing the total travel time of the network. However, 
other utilities can be used in our framework. Finally, we employed data from Archived Data 
Management System (ADMS) to evaluate the performance of our model and algorithm. A 
6.90% reduction in the total travel time of the network was reached by our framework in the 
experiments. More importantly, we observed that incentivizing companies/organization is more 
cost efficient than incentivizing individual drivers. As future work, it is important to study the 
effect of incentivization to change the departure time or the demand.  This is particularly 
relevant in future mobility services because many of them, such as delivery services, are flexible 
in terms of trip time to a certain degree. In addition, we can consider stochastic nature of 
making decision in routing by individual drivers. Moreover, we can extend the incentivization 
framework to the case that not all the organizations accept their received offer. All the codes 
for this project can be found in [70]-[71].  
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Data Summary 

Products of Research  

Research products of this work will be submitted in peer-reviewed journal articles, book 
chapters and/or conference proceedings targeted towards the transportation science research 
community. All the resulting code for offering incentives are shared with Caltrans and NCST 
through HARVARD Dataverse platform (https://doi.org/10.7910/DVN/7VI4LX). In addition, the 
codes will be shared on (https://github.com/ghafeleb/Incentive_Systems_for_New_Mobi 
lity_Services). Our goal is to make the use of our algorithm and its implementation convenient 
to the transportation science research community. The data format and the content of files 
shared on HARVARD Dataverse is described next. 

Data Format and Content  

1. data\\capacity\\Mar2May_2018_new_5-22_link_capacity_region_toy.csv: capacity of 
links in CSV format 

2. data\\capacity\\Mar2May_2018_new_5-22_link_s_0_region_toy.csv: free flow speed of 
links in miles per hour in CSV format 

3. Mar2May_2018_new_5-22_link_tt_0_minutes_region_toy.csv: free flow travel time of 
links in minutes in CSV format 

4. DPFE_files\\Q_vector\\2021_11_09_08_55_25\\python3\\2018-05-01.pickle: OD 
estimation in pickle format  

5. DPFE_files\\R_matrix\\2021_11_09_08_55_25\\2018-05-01.pickle: matrix R in pickle 
format for Python 2 

6. DPFE_files\\R_matrix\\2021_11_09_08_55_25\\2018-05-01_pck.pickle: matrix R in 
pickle format for Python 3 

7. DPFE_files\\tt\\2021_11_09_08_55_25\\2018-05-01_pck.pickle: travel time of paths in 
pickle format for Python 3 

8. Data\\region_toy\\link_length_meter_region_toy_original.csv: length of links in meter 
in CSV format 

9. Data\\region_toy\\link_length_mile_region_toy_original.csv: length of links in miles in 
CSV format 

10. data\\speed_volume\\Mar2May_2018_region_toy_AVG5_5-22_with_linkID_pad\\ 
my_link_avg_count_data_AVG5min_5-22_region_toy_pad.pickle: volume data of links 
in pickle format 

11. data\\speed_volume\\Mar2May_2018_region_toy_AVG5_5-22_with_linkID_pad\\ 
my_link_avg_spd_data_AVG5min_5-22_region_toy_pad.pickle: speed data of links in 
CSV format 

12. data\\YAML\\region_toy_create_graph.yaml: properties of data used to run 
create_graph.py code 

13. data\\YAML\\region_toy_DataCreator1.yaml: properties of data used to run 
DataCreator1.py code 

https://doi.org/10.7910/DVN/7VI4LX
https://github.com/ghafeleb/Incentive_Systems_for_New_Mobi%20lity_Services
https://github.com/ghafeleb/Incentive_Systems_for_New_Mobi%20lity_Services
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14. data\\YAML\\region_toy_DataCreator2.yaml: properties of data used to run 
DataCreator2.py code 

15. data\\YAML\\region_toy_HistoricalData.yaml: properties of data used to run 
HistoricalData.py code 

16. data\\YAML\\region_toy_realCost.yaml: properties of data used to run realCost.py code 

17. data\\YAML\\region_toy_runDet.yaml: properties of data used to run runDet.py code 

Data Access and Sharing  

The codes are free to share and open to the public. In particular, we have uploaded the codes 
on HARVARD Dataverse platform (https://doi.org/10.7910/DVN/7VI4LX). Moreover, we will 
share the code on the GitHub repository (https://github.com/ghafeleb/Incentive_Systems_for_ 
New_Mobility_Services).  

As input to our codes, we used Archived Data Management System (ADMS) that collects, 
archives, and integrates a variety of transportation datasets from Los Angeles, Orange, San 
Bernardino, Riverside, and Ventura Counties. ADMS includes access to real-time traffic datasets 
from i) 9500 highway and arterial loop detectors providing data approximately every 1 minute, 
and ii) 2500 bus and train GPS location (AVL) data operating throughout Los Angeles County. 
We can share a sample of our run upon a reasonable request. 

Results of this work will be published in peer-reviewed scientific journals, books published in 
English, conference proceedings, or as peer-reviewed data reports.  

Reuse and Redistribution  

USC’s policy is to encourage, wherever appropriate, research data to be shared with the general 
public through internet access. This public access will be regulated by the university in order to 
protect privacy and confidentiality concerns, as well to respect any proprietary or intellectual 
property rights. Administrators will consult with the university’s legal office to address any 
concerns on a case-by case basis, if necessary. Terms of use will include requirements of 
attribution along with disclaimers of liability in connection with any use or distribution of the 
research data, which may be conditioned under some circumstances. 

https://doi.org/10.7910/DVN/7VI4LX
https://github.com/ghafeleb/Incentive_Systems_for_%20New_Mobility_Services
https://github.com/ghafeleb/Incentive_Systems_for_%20New_Mobility_Services
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Appendix 

List of Notations 

𝒢: Directed graph of the traffic network 

𝒱: Set of nodes of graph 𝒢 which correspond to major intersections and ramps 

ℰ: Set of edges of graph 𝒢 which correspond to the set of road segments 

|ℰ|: Total number of road segments/edges in the network 𝒢 (i.e., the cardinality of the set ℰ) 

𝑟: Route vector  

𝑇: Time horizon 

|𝑇|: Number of time units (i.e., the cardinality of 𝑇) 

𝑣𝑡: Volume vector of road segments at time 𝑡  

𝒩: Set of all drivers 

𝒩𝒾: Set of drivers of organization 𝑖 

|𝒩|: Total number of drivers (i.e., the cardinality of the set 𝒩) 

𝒩𝒾: Total number of drivers of organization 𝑖 (i.e., the cardinality of the set 𝒩𝑖  ) 

ℛ𝒿: Set of possible route options for driver 𝑗 

ℛ: Total set of possible route options for all OD pairs 

|ℛ|: Number of possible route options (i.e., the cardinality of the set ℛ) 

𝑠𝑖
𝑟,𝑗

: Decision parameter indicates whether route 𝑟 is assigned to driver 𝑗 from organization 𝑖 

𝑇𝑟: The exact travel time for route 𝑟  

𝐹𝑡𝑡(. ): Total travel time function 

ℓ: An index for a link/road in the network which is an edge in graph 𝒢 

θl,𝑡: Travel time of link l at time 𝑡 

�̂�: The vector of estimated volume of links at different times in the horizon 

𝑣ℓ,�̂�: The (|ℰ| × 𝑡 + ℓ)𝑡ℎ element of vector �̂� representing the volume of ℓ𝑡ℎ link at time 𝑡 
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𝑡0: The free flow travel time of the link 

𝑣: The traffic volume of the link 

𝑤: The practical capacity of the link 

𝑠𝑖
𝑗
: The binary route assignment vector of driver 𝑗 from organization 𝑖  

𝑓BPR(. ): BPR function 

𝑆: Decision matrix of all drivers 

𝑆𝑖: Decision matrix of drivers of organization 𝑖 

𝑅: The matrix of probability of a driver being at each link given their route 

𝐷: The matrix of route assignment of the OD pairs 

𝑞: The vector of number of drivers for each OD pair 

𝑞𝑖: The vector of number of drivers of organization 𝑖 for each OD pair 

𝜹: The vector of travel time of routes at different times 

η: The vector of shortest travel time between different OD pairs at different times 

𝑏𝑖: This vector contains the factors by which the travel time of assigned routes can be larger 
than shortest travel time of the drivers of organization 𝑖 

𝐵𝑖: The matrix of shortest travel time assignment of drivers of organization 𝑖 

α𝑖: The Value of Time for organization 𝑖 

α: The vector of Value of Time for different organizations 

𝑐𝑖: The of cost of incentive offered to organization 𝑖 

γ𝑖: Total travel time of organization 𝑖 in the abscense of incentivization platform 

Ω: Budget 

𝑟ℓ,𝑡: The row of matrix 𝑅 that corresponds to link ℓ  at time 𝑡 

𝐾: The number of OD pairs 

𝑒: An edge of graph 𝒢 which corresponds to a road segments in the traffic network 
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Reformulated Optimization Model for ADMM Algorithm 

To solve optimization problem (7) efficiently, we present a distributed algorithm based on this 
reformulation 

min
𝐒,𝜔,𝐇,𝐖

𝐙,𝐮, {𝛽𝑖}𝑖=1
𝑛

𝑢𝑖,�̃�,𝑐

      ∑∑𝑣ℓ,�̂� 𝜃ℓ,𝑡(𝑣ℓ,�̂� )

|𝑇|

𝑡=1

|ℇ|

ℓ=1

  

                                       −
�̃�

2
∑∑∑(𝑍𝑖)𝑟,𝑡((𝑍𝑖)𝑟,𝑡

𝑛

𝑖=1

− 1)

|T|

𝑡=1

ℛ

𝑟=1

      

                   𝑠. 𝑡.         𝐒𝑖𝟏 = 𝐮𝑖 ,    ∀𝑖 = 1,2, . . . , 𝑛 

𝝎 = �̃�𝒖 

                               �̃�𝒖 = 𝒒,    ∀𝑖 = 1,2, . . . , 𝑛 

                                   𝐖𝑖
⊤𝟏 = 𝟏,    ∀𝑖 = 1,2, . . . , 𝑛 

                                𝐒𝑖 = 𝐖𝑖 ,    ∀𝑖 = 1,2, . . . , 𝑛 

                                                             𝐇𝑖
⊤𝜹𝒑 + 𝛽𝑖 = 𝒃𝑖⊙𝐁𝑖η,      ∀𝑖 = 1,2, . . . , 𝑛 

                              𝐒𝑖 = 𝐇𝑖 ,    ∀𝑖 = 1,2, . . . , 𝑛 

                             𝛽𝑖 ≥ 0,       ∀𝑖 = 1,2, . . . , 𝑛 

                                                       𝐙𝑖 ∈  [0,1]
(|ℛ|∙|𝐓|)×(|𝒩𝑖|),     ∀𝑖 = 1,2, . . . , 𝑛 

               𝐼𝑐̃ = 𝛼 ⊙ (𝛥𝑢 − 𝛾) 

                                       �̃� ≥ 0,     �̃�⊤�̃� + 𝛽 = Ω,       �̃� ≥ 0  

                                                       𝐒𝑖 = 𝐙𝑖 ,       ∀𝑖 = 1,2, . . . , 𝑛 

(10) 

Details of Alternating Direction Method of Multipliers (ADMM) 

Before explaining the steps of our proposed algorithm, let us first explain Alternating Direction 
Method of Multipliers (ADMM), which is a main building block of our framework. 

Review of ADMM 

min
𝑤,𝑧

ℎ(𝑤) + 𝑔(𝑧)        𝑠. 𝑡.   𝐴𝑤 + 𝐵𝑧 =  𝑐, 

where 𝑤 ∈ 𝑅𝑑1 , 𝑧 ∈ 𝑅𝑑2, 𝑐 ∈ 𝑅𝑘, 𝐴 ∈ 𝑅𝑘×𝑑1, and 𝐵 ∈ 𝑅𝑘×𝑑2. By forming the augmented 
Lagrangian function 

ℒ(𝑤, 𝑧, 𝜆) ≜ ℎ(𝑤) + 𝑔(𝑧) + ⟨𝜆, 𝐴𝑤 + 𝐵𝑧 − 𝑐⟩ +
𝜌

2
‖𝐴𝑤 + 𝐵𝑧 − 𝑐‖2

2 

each iteration of ADMM applies alternating minimization to the primal variables and gradient 
ascent to the dual variables. More precisely, at iteration 𝑟, ADMM uses the update rules: 
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Primal Update:                          𝑤𝑟+1 = argmin
𝑤
ℒ(𝑤, 𝑧𝑟 , 𝜆𝑟), 

𝑧𝑟+1 = argmin
𝑧
ℒ(𝑤𝑟+1, 𝑧, 𝜆𝑟) 

Dual Update:                            𝜆𝑟+1 = 𝜆𝑟 + 𝜌(𝐴𝑤𝑟+1 + 𝐵𝑧𝑟+1 − 𝑐) 

(11) 

This algorithm is well studied in the optimization literature (see [54] for a monograph on the 
use of this algorithm in convex distributed optimization and [57] for its use in non-convex 
continuous optimization).  

ADMM for Solving (7) 

Let 

ℒ({S𝑖}𝑖=1
𝑛 , {𝐻𝑖}𝑖=1

𝑛 , {W𝑖}𝑖=1
𝑛 , {Z𝑖}𝑖=1

𝑛 , 𝜔, 𝛽, {β𝑖}𝑖=1
𝑛 , 𝑐̃, {u𝑖}𝑖=1

𝑛 ) 

≜ 𝐹𝑢(𝜔) −
�̃�

2
∑∑∑∑(Z𝑗)𝑖,(𝑟,𝑡)((Z𝑗)𝑖,(𝑟,𝑡))

|𝑇|

𝑡=1

|ℰ|

ℓ=1

|𝒩𝑖|

𝑗=1

𝑛

𝑖=1

 

+∑𝕀
ℝ+
|𝒩𝑖|(𝛽𝑖

𝑛

𝑖=1

) + 𝕀ℝ+2𝑛(�̃�) + 𝕀ℝ+(𝛽) + 𝕀[0,1]((Z𝑗)𝑖,(𝑟,𝑡)) 

+∑⟨λ1,𝑖 , S𝑖𝟏 − 𝑢𝑖⟩

𝑛

𝑖=1

+ ⟨λ2, 𝜔 − �̃�𝑢⟩ +∑⟨λ3,𝑖 , Du𝑖 − 𝑞𝑖⟩

𝑛

𝑖=1

 

+∑⟨λ4,𝑖 ,W𝑖𝟏 − 𝟏⟩

𝑛

𝑖=1

+∑⟨Λ5,𝑖 , S𝑖 −𝑊𝑖⟩

𝑛

𝑖=1

 

+∑⟨λ6,𝑖 , H𝑖
⊤𝛿𝑝 − 𝛽𝑖 − 𝑏𝑖 ∙ (𝐵𝑖𝜂)⟩

𝑛

𝑖=1

+ ⟨λ7, (Δ�̃�)
⊤𝑢 − �̃�𝛿 − 𝐼�̃�⟩ 

+∑⟨Λ8,𝑖 ,𝑆𝑖 −𝐻𝑖⟩

𝑛

𝑖=1

+ ⟨λ9, �̃�
⊤�̃� + 𝛽 − Ω⟩ + Λ10,𝑖 , S𝑖 − 𝑍𝑖⟩ 

+
𝜌

2
∑‖𝑆𝑖𝟏 − 𝑢𝑖‖

2

𝑛

𝑖=1

+
𝜌

2
∑‖𝑆𝑖𝟏 − 𝑢𝑖‖

2

𝑛

𝑖=1

+
𝜌

2
‖𝜔 − �̃�𝑢‖2 

+
𝜌

2
∑‖𝐷𝑢𝑖 − 𝑞𝑖‖

2

𝑛

𝑖=1

+
𝜌

2
∑‖𝑊𝑖𝟏− 𝟏‖

2

𝑛

𝑖=1

+
𝜌

2
∑‖𝑆𝑖 −𝑊𝑖‖

2

𝑛

𝑖=1

 

+
𝜌

2
∑‖H𝑖

⊤𝛿𝑝 + 𝛽𝑖 − 𝑏𝑖 ∙ (𝐵𝑖𝜂)‖
2

𝑛

𝑖=1

+
𝜌

2
‖(Δ�̃�)⊤𝑢 − �̃�𝛿 − 𝐼�̃�‖2 

(12) 
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+
𝜌

2
∑‖𝑆𝑖 − 𝐻𝑖‖

2

𝑛

𝑖=1

+
𝜌

2
‖𝑐̃⊤𝟏 + 𝛽 − Ω‖2 +

𝜌

2
∑‖𝑆𝑖 − 𝑍𝑖‖

2

𝑛

𝑖=1

 

be the augmented Lagrangian function of (7) with the set of Lagrange multipliers 
{{λ1}𝑖=1

𝑛 , λ2, … , {Λ10}𝑖=1
𝑛  and  𝜌 > 0 be the primal penalty parameter. Then, ADMM solves (7) 

by the following iterative scheme 

𝜔(ℓ,𝑡)
𝑡+1 = argmin

𝜔(ℓ,𝑡)

  𝜔(ℓ,𝑡)𝜃ℓ,𝑡(𝜔(ℓ,𝑡)) + (𝜆2
𝑡 )ℓ,�̂� (𝜔ℓ,�̂� − 𝑟ℓ,�̂� (∑𝑢𝑖

𝑛

𝑖=1

)) +
𝜌

2
(𝜔ℓ,�̂� − 𝑟ℓ,�̂� (∑𝑢𝑖

𝑡

𝑛

𝑖=1

)) 

𝑆𝑖
𝑡+1 = argmin   

𝑆𝑖

〈𝜆1,𝑖
𝑡 , 𝑆𝑖𝟏 − 𝑢𝑖

𝑡〉 + 〈Λ5,𝑖
𝑡 , 𝑆𝑖 −𝑊𝑖

𝑡〉 + 〈Λ8,𝑖
𝑡 , 𝑆𝑖 −𝐻𝑖

𝑡〉 + 〈Λ10,𝑖
𝑡 , 𝑆𝑖 − 𝑍𝑖

𝑡〉

+
𝜌

2
‖𝑆𝑖𝟏 − 𝑢𝑖

𝑡‖2 +
𝜌

2
∑‖𝑆𝑖𝟏 − 𝑢𝑖

𝑡‖2
𝑛

𝑖=1

+
𝜌

2
‖𝑆𝑖 −𝑊𝑖

𝑡‖2 +
𝜌

2
‖𝑆𝑖 − 𝐻𝑖

𝑡‖2

+
𝜌

2
‖𝑆𝑖 − 𝑍𝑖

𝑡‖2,     ∀𝑖 = 1,2, . . . , 𝑛                                                                                         

𝛽𝑖
𝑡+1 = argmin  

𝛽𝑖

𝕀
ℝ+
|𝒩𝑖|( 𝛽𝑖) + 〈𝜆6,𝑖

𝑡 , 𝐻𝑖
𝑡⊤𝛿𝑝 + 𝛽𝑖

𝑡 − 𝑏𝑖 ∙ (𝐵𝑖𝜂)〉 +
𝜌

2
‖𝐻𝑖

𝑡⊤𝛿𝑝 + 𝛽𝑖
𝑡 − 𝑏𝑖 ∙ 𝐵𝑖𝜂‖

2
,    ∀𝑖

= 1,2, . . . , 𝑛 

�̃�𝑡+1 = argmin
𝑐̃

  𝕀ℝ+2𝑛( �̃�) + 〈𝜆7
𝑡 , (∆�̃�)⊤𝑢𝑡 − �̃�𝛿 − Ĩ�̃�〉 + 〈𝜆9

𝑡 , �̃�⊤�̃� + 𝛽 − Ω〉

+
𝜌

2
‖(∆�̃�)⊤𝑢𝑡 − �̃�𝛿 − Ĩ�̃�‖

2
+
𝜌

2
‖�̃�⊤𝟏+ 𝛽𝑡 − Ω‖

2
                                                          

𝑢𝑡+1 = argmin  
𝑢

〈𝜆1
𝑡 , �̃�𝑡+1 − 𝑢〉 + 〈𝜆2

𝑡 , 𝜔 − �̃�𝑢〉 + 〈𝜆2
𝑡 , �̃�𝑢 − 𝑞〉 + 〈𝜆7

𝑡 , (∆�̃�)⊤𝑢 − �̃�𝛿 − Ĩ�̃�𝑡+1〉

+
𝜌

2
‖�̃�𝑡+1 − 𝑢‖2 +

𝜌

2
‖𝜔 − �̃�𝑢‖

2
+
𝜌

2
‖�̃�𝑢 − 𝑞‖

2
+
𝜌

2
‖(∆�̃�)⊤𝑢 − �̃�𝛿 − Ĩ�̃�𝑡+1‖

2
 

𝑊𝑖
𝑡+1 = argmin

𝑊𝑖

  〈𝜆4,𝑖
𝑡 ,𝑊𝑖𝟏 − 𝟏〉 + 〈Λ5,𝑖

𝑡 , 𝑆𝑖
𝑡+1 −𝑊𝑖〉 +

𝜌

2
‖𝑊𝑖𝟏 − 𝟏‖

2 +
𝜌

2
‖𝑆𝑖

𝑡+1 −𝑊𝑖‖
2
,    ∀𝑖

= 1,2, . . . , 𝑛 
𝐻𝑖
𝑡+1 = argmin

𝐻𝑖

   〈𝜆6,𝑖
𝑡 , 𝐻𝑖

⊤𝛿𝑝 + 𝛽𝑖
𝑡+1 − 𝑏𝑖 ∙ (𝐵𝑖𝜂)〉 + 〈Λ8,𝑖

𝑡 , 𝑆𝑖
𝑡+1 −𝐻𝑖〉

+
𝜌

2
‖𝐻𝑖

⊤𝛿𝑝 + 𝛽𝑖
𝑡 − 𝑏𝑖 ∙ (𝐵𝑖𝜂)‖

2
+
𝜌

2
‖𝑆𝑖

𝑡+1 −𝐻𝑖‖
2
,   ∀𝑖 = 1,2, . . . , 𝑛                         

𝑍𝑖
𝑡+1 = argmin

𝑍𝑖

𝕝(𝜌 > �̃�)𝕀[0,1](|ℛ|∙|T|)×|𝒩𝑖|(𝑍𝑖) + 𝕝(𝜌 > �̃�)𝕀{0,1}(|ℛ|∙|T|)×|𝒩𝑖|(𝑍𝑖)

−
�̃�

2
∑∑∑(𝑍𝑗)𝑖,(𝑟,𝑡)((𝑍𝑗)𝑖,(𝑟,𝑡) − 1) + 〈Λ10,𝑖

𝑡 , 𝑆𝑖
𝑡+1 − 𝑍𝑖〉

|𝑇|

𝑡=1

|𝜀|

ℓ=1

|𝒩𝑖|

𝑗=1

+
𝜌

2
∑‖𝑆𝑖

𝑡+1 − 𝑍𝑖‖
2
,

𝑛

𝑖=1

   ∀𝑖 = 1,2, . . . , 𝑛                                                                            

𝛽𝑡+1 = argmin
�̃�

  𝕀ℝ(𝛽) + 〈𝜆9
𝑡 , �̃�𝑡+1⊤�̃� + 𝛽 −  Ω〉 +

𝜌

2
‖�̃�𝑡+1⊤𝟏 + 𝛽 −  Ω‖

2
 

𝜆1,𝑖
𝑡+1 = 𝜆1,𝑖

𝑡 +𝜌(𝑆𝑖
𝑡+1𝟏 − 𝑢𝑖

𝑡+1), ∀𝑖 = 1,2, . . . , 𝑛                                                                
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𝜆2
𝑡+1 = 𝜆1,𝑖

𝑡 +𝜌(𝜔𝑡+1 − 𝑅 (∑𝑢𝑖
𝑡+1,

𝑛

𝑖=1

))        

𝜆3,𝑖
𝑡+1 = 𝜆3,𝑖

𝑡 +𝜌(𝐷𝑢𝑖
𝑡+1𝟏− 𝑞𝑖),  ∀𝑖 = 1,2, . . . , 𝑛   

𝜆4,𝑖
𝑡+1 = 𝜆4,𝑖

𝑡 +𝜌(𝑊𝑖
𝑡+1⊤𝟏 − 𝟏), ∀𝑖 = 1,2, . . . , 𝑛 

Λ5,𝑖
𝑡+1 = Λ5,𝑖

𝑡 +𝜌(𝑆𝑖
𝑡+1 −𝑊𝑖

𝑡+1),  ∀𝑖 = 1,2, . . . , 𝑛 

𝜆6,𝑖
𝑡+1 = 𝜆6,𝑖

𝑡 +𝜌(𝐻𝑖
𝑡+1⊤𝛿𝑝 + 𝛽𝑖

𝑡+1 − 𝑏𝑖⊙𝐵𝑖𝜂), ∀𝑖 = 1,2, . . . , 𝑛 

𝜆7
𝑡+1 = 𝜆7

𝑡 +𝜌(𝛼 ⊙ (Δ⊤𝑢𝑡+1 − 𝛿) − Ĩ�̃�𝑡+1)   
Λ8,𝑖
𝑡+1 = Λ8,𝑖

𝑡 +𝜌(𝑆𝑖
𝑡+1 − 𝐻𝑖

𝑡+1), ∀𝑖 = 1,2, . . . , 𝑛 

𝜆9
𝑡+1 = 𝜆9

𝑡 +𝜌(𝑐̃𝑡+1⊤𝟏 + 𝛽𝑡+1 − Ω)   

Λ10,𝑖
𝑡+1 = Λ10,𝑖

𝑡 +𝜌(𝑆𝑖
𝑡+1 − 𝑍𝑖

𝑡+1), ∀𝑖 = 1,2, . . . , 𝑛 

The primal update rules can be simplified as 

𝜔ℓ,�̂�
𝑡+1 = argmin

𝜔ℓ,�̂�

  𝜔ℓ,�̂�𝜃ℓ,𝑡(𝜔ℓ,�̂�) + 𝜆2
𝑡
(ℓ,�̂�)

(𝜔ℓ,�̂� − 𝑟ℓ,�̂� (∑𝑢𝑖

𝑛

𝑖=1

))

+
𝜌

2
(𝜔ℓ,�̂� − 𝑅ℓ,�̂� (∑u𝑖

𝑡

𝑛

𝑖=1

))

2

, ∀𝑖 = 1,2, . . . , |휀|, ∀�̂� = 1, 2, . . . , �̃� 

𝑆𝑖
𝑡+1 = (−𝜆1,𝑖

𝑡 𝟏⊤ − Λ5,𝑖
𝑡 − Λ8,𝑖

𝑡 − Λ10,𝑖
𝑡 + 𝜌𝑢𝑖𝟏

𝑡⊤ + 𝜌𝑊𝑖
𝑡 + 𝜌𝐻𝑖

𝑡 + 𝜌𝑍𝑖
𝑡)(𝜌𝟏𝟏⊤ + 3𝜌𝐼)−1, ∀𝑖

= 1,2, . . . , 𝑛 

𝛽𝑖
𝑡+1 = Π(

1

𝜌
(−𝜆6,𝑖

𝑡 −𝜌𝐻𝑖
𝑡⊤𝛿𝑝 + 𝜌𝑏𝑖⊙ (𝐵𝑖𝜂)))

ℝ+

, ∀𝑖 = 1,2, . . . , 𝑛 

�̃�𝑡+1 = Π(
1

𝜌
(𝐼⊤𝐼 + �̃��̃�⊤)

−1
(𝐼⊤𝜆7

𝑡 − 𝜆9
𝑡 �̃� − 𝜌𝐼⊤(𝛼⨀𝛾) + 𝜌𝐼⊤(𝛼⨀(∆⊤𝑢𝑡)) − 𝜌𝛽�̃� + 𝜌Ω�̃�))

ℝ+

  

𝑢𝑡+1 =
1

𝜌
(𝐼 + �̃�⊤�̃� + �̃�⊤�̃� + (Δ�̃�)(Δ�̃�)⊤)

−1
(𝜆1
𝑡 + �̃�⊤𝜆2

𝑡 − �̃�⊤𝜆3
𝑡 − (∆�̃�)𝜆7

𝑡 + 𝜌�̃�𝑡 − 𝜌�̃�⊤𝜔𝑡+1

+ 𝜌�̃�⊤𝑞 + 𝜌(∆�̃�)(𝛼⨀𝛾) + 𝜌(∆�̃�)(𝐼�̃�𝑡+1)) 

𝑍𝑖
𝑡+1 = 𝕝(𝜌 > �̃�)Π((

1

𝜌 − �̃�
)(𝜌𝑆𝑖

𝑡+1 + Λ10
𝑡 −

�̃�

2
))

[0,1]

+ 𝕝(𝜌 < �̃�)Π((
1

𝜌 − �̃�
)(𝜌𝑆𝑖

𝑡+1 + Λ10
𝑡 −

�̃�

2
))

{0,1}

, ∀𝑖 = 1,2, . . . , 𝑛 

𝑊𝑖
𝑡+1 =

1

𝜌
(𝟏𝟏⊤ + 𝐼)−1(−𝟏𝜆4,𝑖

𝑡⊤ + Λ5,𝑖
𝑡 + 𝜌𝟏𝟏⊤ + 𝜌𝑆𝑖

𝑡+1),∀𝑖 = 1,2,… , 𝑛 

𝐻𝑖
𝑡+1 =

1

𝜌
(𝛿𝑝𝛿𝑝

⊤ + 𝐼)
⊤
(−𝛿𝑝𝜆6,𝑖

𝑡⊤ + Λ8,𝑖
𝑡 − 𝜌𝛿𝑝𝛽𝑖

⊤ + 𝜌𝛿𝑝(𝑏𝑖 ∙ 𝐵𝑖𝜂)
⊤ + 𝜌𝑆𝑖

𝑡+1), ∀𝑖 = 1,2,… , 𝑛 
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User Equilibrium (UE) Algorithm 

In our numerical experiments, we use the volume at User Equilibrium state of the system as our 
baseline. To compute the volume at User Equilibrium, we present Algorithm 2. Before we 
present the details of Algorithm 2, let us explain some notations used in this algorithm. Vector 

𝑣 ∈ ℝ+
|𝔼|⋅|𝑇| denotes the volume of links at different time slots. �̃� ∈ {0,1}(|ℛ|⋅|𝑇|)×|𝒩| is the 

matrix of route assignment of all the drivers in the system at different times such that each 

driver is assigned to the fastest route. Speed vector μ ∈ ℝ+
|𝔼|⋅|𝑇| includes the speed of the links 

at different times. The travel time of paths at different times is presented in vector δ�̃� ∈

ℝ+
|ℛ|⋅|𝑇|

. In this algorithm, we rely on the method presented by [51] to compute matrix 𝑅 based 

on the volume (𝑣) and compute δ�̃� based on speed (μ). 

 

An Example of the Model and Notations 

In this section, we provide a small example of a network for further description of our model and 
notations. Consider the network 

 

Figure 8. Network example 𝓖𝟏. 

where 𝒱 = {𝜈1, 𝜈2, 𝜈3} is the set of nodes and ℰ = {𝑒1, 𝑒2, 𝑒3} is the set edges (roads). Details of 
the links and attributes are represented in Table 2. The (origin, destination) pair is (𝜈, 𝜈3). There 
are two routes going from origin to destination as illustrated in Table 3. The time horizon set is 
𝑻 =  {1, 2, 3} and each time is 0.2 hour. To estimate the location of drivers at each time, we 
need matrix 𝑹 ∈ [0,1]9×6 as follows 
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  𝑡1 𝑡1 𝑡1 𝑡1 𝑡1 𝑡1 
  =1 =1 =2 =2 =3 =3 
  𝑟1 𝑟2 𝑟1 𝑟2 𝑟1 𝑟2 
 
 
 
 
R= 

𝑡2 = 1, 𝑒1 

(

 
 
 
 
 
 

1 1 0
0 0 0
0.5 0 0

          
0 0 0
0 0 0
0 0 0

0 0 1
0 1 0
0.5 0 0.5

        
1 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0.5

        
0 1 1
1 0 0
0 0.5 0)

 
 
 
 
 
 

 

 

𝑡2 = 1, 𝑒2 
𝑡2 = 1, 𝑒3 
𝑡2 = 2, 𝑒1 
𝑡2 = 2, 𝑒2 
𝑡2 = 2, 𝑒3 
𝑡2 = 3, 𝑒1 
𝑡2 = 3, 𝑒2 
𝑡2 = 3, 𝑒3 

where 𝑡1 is the entrance time of the driver and 𝑡2 is the driver's arrival time at the road.  

Table 2. Set of edges. 

 Length (Mile) Speed (mph) Travel Time (Hour) 

𝑒1 5 50 0.1 

𝑒2 10 50 0.2 

𝑒3 5 50 0.1 

Table 3. Set of routes. 

 r Graph 
Route 1 
𝑒1 → 𝑒3 𝑟1 = [

1
0
1
] 

 

Route 2 
𝑒2 → 𝑒3 𝑟2 = [

0
1
1
] 

 

Assume there are two organizations in the system. The Value of Time for organization 1 is $2.63 
per minute and Value of Time for organization 2 is $1.315 per minute so 𝛼1 = 2.63 and 𝛼2 =
1.315. There are three drivers in the system and 𝒩 = {𝑑1, 𝑑2 𝑑3} such that 𝒩1 = {𝑑1, 𝑑2} and 
𝒩2 = {𝑑3}.  

Given that drivers 𝑑1 and 𝑑2 have to finish their travel as soon as possible and the travel time of 
driver 𝑑3 can delayed up to two times of the shortes travel time, matrices 𝑩1 and 𝑩2 and 
vectors 𝒃1 and 𝒃2 will be defined as follows: 
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OD Assignment Travel Time Multiplier 

𝐵1 =
𝑑1
𝑑2
  (
1 0 0
1 0 0

) 𝑏1 =
𝑑1
𝑑2
  (       

1

1
       ) 

OD Assignment Travel Time Multiplier 
𝐵2 = 𝑑3  (0 1 0) 𝑏2 = 𝑑3  (       2       ) 
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